Program Verification

CS60030 FORMAL SYSTEMS

ded A Query Dnven "
Validation Proposmonal A\ Automatic mOdel . Diagrams

B Binaries okcton Algonthm s Abstraction Meduar

OwardS nstr ‘0 ® Quantification ® abstraction mo
FNAE, FASC, eficient_ Specification COde i Detection O“eryM 4
P e\ @Fification:
Generation Reactlve "'9’9"”

A K Singh Distinguished Professor in Al, P~ LANQUAGES Metsursggent fonemiite Dynam.c VO ph
Dept of Computer Science & Engineering Sp::::mM [d ~ Runtlme |YSIS o evisted
Indian Institute of Technology Kharagpur - Coag%n‘:'r: TRy
Email: pallab@cse.iitkgp.ac.in Tﬁﬁffséeﬂ?g.‘i,”ctsﬂTestln Pafa@u%.%!;'n%ed E?J?EL?C eCk

Web: http:llcse.iitk-gp.ac.inl;pallab o i Vsy';zzmzwL"f?SYStemS D|5tr|b

Temporal ular Development Fuzzy Compatibiity

Sale(\‘/ , Co‘mputatlons Oftware Queries Reachal tlty

Coverage Vjrtual ‘2ouese Treew

i

¢
gwEAR N

e ——————— - o
(&:— e ——— F_'.-;e‘!‘ -
T

FORMAL METHODS FOR SAFETY CRITICAL SYSTEMS

Software Verification

Is a software program free from bugs?

= What kind of bugs?
e Lint checking — Divide by zero, Variable values going out of range
e User specified bugs — Assertions

Challenges:

m Real valued variables
e Huge state space if we have to consider all values

m Size of the program is much smaller than the number of paths to be explored
e Branchings, Loops

We need to extract an abstract state machine from a program

Abstraction: Sound versus Complete

m Sound Abstraction

If the abstraction shows no bugs, then the original program also doesn’t have bugs

m Complete Abstraction

If the abstraction shows a bug, then the original program has a bug

Due to undecidability of static analysis problems, we cant have a general procedure that is both sound and
complete.

Techniques

Abstract Static Analysis

m Abstract interpretation

m Numerical abstract domains

Software Model Checking

m Explicit and symbolic model checking

m Predicate abstraction and abstraction refinement

Example

Sample program:

inti=0

do {
assert(i <= 10);
i = i+2;

} while (i <5);

Control Flow Graph (CFG):

[i<5]

i=0;

[

L56

[i>10]

[i<10]

I=i+2;

[i>5]

@ Error

Concrete Interpretation

Philosophy:

Collect the set of possible values of i until

a fixed point is reached

© {2}
[i>5]
L5 0 @

lteration-1

L1 ilnt

L2 § {0,2}

»@ Error

[i>10]
[i<10]
L39{0,2}
i=i+2;
®{2,4}
[i>5]
L50 @

L4

lteration-2

Sample program:
int i=0
do {

assert(i <=10);
i = i+2;
} while (i < 5);

lteration-3

6

Abstract Interpretation

Philosophy:

Use an abstract domain instead of value sets
Example: We may use value intervals instead of value sets

[i<5]

lteration-1

1 i[min, max]

i=0;
L2 | [0,0]
[i>10]
[i<10]
L3©[0,0]

i=i+2;

»@ Error

[i<5]

Sample program:

int i=0
do {
}
lteration-2 lteration-3
y i[min, max] L1 i[min, max]
i=0: 1=0;
2102 »@ Error et AL
[>10] [i>10]
[i<10] '[is10]
L39[0,2] [i<5] @ [0,4]
i=i+2; i=i+2;
7¢ 241 n 29
[i>5] [i>5]
L50]] L50 [5,6]
/

assert(i <=10);
i =i+2;
while (i < 5);

»®@ Error

Actually, the value 5 is not possible here

Z

Numerical Abstract Domains

The class of invariants that can be computed, and hence the properties that can be proved, varies with the
expressive power of a domain

m An abstract domain can be more precise than another
m The information loss between different domains may be incomparable

Examples:

m The domain of Signs has three values: {Pos, Neg, Zero}

m Intervals are more expressive than signs. Signs can be modeled as [min,0], [0,0], and [0,max]
m The domain of Parities abstracts values as Even and Odd

m Signs or Intervals cannot be compared with Parities.

Predicate Abstraction

« A sound approximation R’ of the transition relation R is constructed using predicates over program variables

« Apredicate P partitions the states of a program into two classes: one in which P evaluates to true and one in

which it evaluates to false

e Each class is an abstract state
* Let A and B be abstract states. A transition is defined from A to B if there is a state in A with a transition to a
state in B

 The abstract program corresponding to R’ is represented by a Boolean program, one with only Boolean data

types, and the same control flow constructs as C programs

Predicate Abstraction

[i<5]

Abstraction-1 uses the predicate (i=0)
(represented by the variable b,)

CFG of program

i=0;

L24 [i>10]

*® Error

[T]

Abstraction-1

119

" L24 [-by]

*® Error

[T]

b,:=b,?F:%

L4] -]

L50

Sample program:

int i=0

do {
assert(i <=10);
i++;

} while (i <5);

In Abstraction-1 the Error location is
reachable, but the counter-example
cant be reconstructed in the real
program

10

Sample program:

Predicate Abstraction 120
do {

Abstraction-2 refines Abstraction-1 using the assert(i <=10);

additional predicate (i<5) (represented by the variable b,) I+
} while (i < 5):
Abstraction-1 Abstraction-2
L1i |_1i
b1:= T, b1y b2 = T’ T!
L2y [=bd] L2 [—b,] o
*® Error *® Error In Abstraction-2 the location L2 is
[T] [T] reached with b, every time. Hence the
[T] L30 [b,] 130)) Error location is unreachable.
b1:= b1?F:*; b1 = b1?F(b2? F) ;
| | by :=b,?(b,? T):F
L4 L4
"[—-b1] | [=b,]
L5© L5©

11

Model Checking with Predicate Abstraction

* Aheavy-weight formal analysis technique

« Recent successes in software verification, e.g., SLAM at Microsoft

« The abstraction reduces the size of the model by removing irrelevant details

* The abstract model is then small enough for an analysis with a BDD-based Model Checker
« Idea: only track predicates on data, and remove data variables from model

* Mostly works with control-flow dominated properties

Source of these slides: D. Kroening: SSFT12 - Predicate Abstraction: A Tutorial

Outline

 Introduction Existential Abstraction

* Predicate Abstraction for Software

« Counterexample Guided Abstraction Refinement
« Computing Existential Abstractions of Programs
« Checking the Abstract Model

« Simulating the Counterexample Refining the Abstraction

Predicate Abstraction as Abstract Domain

We are given a set of predicates over S, denoted by y,...,M5,.

An abstract state is a valuation of the predicates:

S= B

The abstraction function:

afs) = (M(s), ..., My(s))

Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

T

Predicates:
p1 &= x>y
p2 &= y=0

Predicate Abstraction: The Basic Idea

Concrete states over variables x, y:

Predicates:
x>y
p=y=0

Abstract Transitions?

Existential Abstraction’

Definition (Existential Abstraction)

Amodel M = (S, S, T) is an existential abstraction of
M = (S, So, T) with respectto a : S — S iff
3s€S.a(s) =8 > §€F and A
« 3(s,sY) €T.a(s)=54a(sh =& = (§,8) €T.

1Clarke, Grumberg, Long: Model Checking and Abstraction, ACM TOPLAS, 1994

Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a
given a.

Definition (Minimal Existential Abstraction)

Amodel M = (S, So, T) is the minimal existential abstraction of
M = (S,So, T) with respecttoa : S — S Iff

e 3s€Sp.a(s) =5 & 83€S and
e 3(s,sHh eT.a(s)=s Aa(sh) =st & (S,s) €T.

This is the most precise existential abstraction.

Existential Abstraction

We write a(m) for the abstraction of a path m= so, s1, .. .:

a(m = a(so),a(s1),...

Existential Abstraction

We write a(m) for the abstraction of a path m= so, s1, .. .:
a(m) = a(so),a(s1),...
_emma

et M be an existential abstraction of M . The abstraction of every
path (trace) min M is a path (trace) iIn M.

T €M = a(m eM

Proof by induction.
We say that M overapproximates M.

Abstracting Properties

Reminder: we are using
« aset of atomic propositions (predicates) A, and
« astate-labelling function L : S — P (A)
in order to define the meaning of propositions in our properties.

Abstracting Properties

We define an abstract version of it as follows:

* First of all, the negations are pushed into the atomic propositions.

E.g., we will have
x=0cAandx#0€A

Abstracting Properties

« An abstract state Sis labelled with a €A iff all of the corresponding concrete states are
labelled with a.

ae Ly & V s|a(s)= S.a€eL(s)

« This also means that an abstract state may have neither the label x = 0 nor the label x # 0-
this may happen if it concretizes to concrete states with different labels!

Conservative Abstraction

The keystone is that existential abstraction is conservative for certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let @ be a VCTL* formula where all negations are pushed into the
atomic propositions, and let M be an existential abstraction of M . If ¢
holds on M, then it also holds on M .

MEQ = MEg

We say that an existential abstraction is conservative for VCTL* properties. The same result can be
obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of ¢. The converse usually does
not hold.

Back to the Example

.
— D1, i2 P1, 12 —pl,

-pl, 12

Let’s try a Property

Property:
X>yVWy#0 & p1Vap

Let’s try a Property

Property:
X>yVy#0 < p1Vp2

Another Property

e)
Ao

EEy

11, P2

Property:
X>y & m

Another Property

ey 0%

D@
’ p1 1

P1, P2 b _plb
GG D—(D

11, P2

Property:
X=>y & m

—pl,

>

= s

(D)

o

O =

ol 2

— ()]

O nnuvy

c N
| -

m O X

-

<C

Another Property

Property:

But: the counterexample Is spurious
X=>y & m

SLAM

* Microsoft blames most Windows crashes on third party device drivers

» The Windows device driver APl is quite complicated

 Drivers are low level C code

« SLAM: Tool to automatically check device drivers for certain errors
 SLAM is shipped with Device Driver Development Kit

* Full detail available at

http://research.microsoft.com/slam/

SLIC

Finite state language for defining properties
o Monitors behavior of C code
o Temporal safety properties (security automata)

o familiar C syntax

« Suitable for expressing control-dominated properties
o e.g., proper sequence of events

o can track data values

SLIC Example

\ acq\
unlocked locked
\ _
rel

state {
enum {Locked, Unlocked}

s = Unlocked:

}

KeAcquireSpinLock. entry {
If (s==Locked) abort;
else s = Locked;

}

KeReleaseSpinLock. entry {
If (s==Unlocked) abort;
else s = Unlocked;

SLIC Example

N acq
unlocked J locked
re\rel acq
error

state {
enum {Locked, Unlocked}

s = Unlocked:

}

KeAcquireSpinLock. entry {
If (s==Locked) abort;
else s = Locked;

}

KeReleaseSpinLock. entry {
If (s==Unlocked) abort;
else s = Unlocked;

Refinement Example

do {
KeAcquireSpinLock ();
nPacketsOld = nPackets;
If (request) {
request = request—> Next;
KeReleaseSpinLock ();

nPackets++;

}
} while(nPackets = nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

nPacketsOld = nPackets:

Does this code obey the It (request) {

locking rule? request = request—> Next;

KeReleaseSpinLock ();

nPackets++;

}
} while(nPackets = nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

It (4 {

KeReleaseSpinLock ();

}
Y while(;

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

(4 1

KeReleaseSpinLock ();
}

Ywhile(3;

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

(4 1

KeReleaseSpinLock ();
}

Ywhile(3;

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();
It (4 {

KeReleaseSpinLock ();
}

}while(9);

KeReleaseSpinLock (); Is this path concretizable?

Refinement Example

do {
KeAcquireSpinLock ();
nPacketsOIld = nPackets;
If (request) {
request = request—> Next;
KeReleaseSpinLock ();

nPackets++;
}
} while(nPackets = nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();
nPacketsOld = nPackets;
If (request) {
request = request—> Next;
KeReleaseSpinLock ();

nPackets++;
}
} while(nPackets = nPacketsOld);

KeReleaseSpinLock ();

This path is
spurious!

Refinement Example

do {
KeAcquireSpinLock ();
nPacketsOld = nPackets;
If (request) {
request = request—> Next
KeReleaseSpinLock ();

nPackets++;
}
} while(nPackets = nPacketsOld);

KeReleaseSpinLock ();

Let’s add the predicate
nPacketsOld==nPackets

Refinement Example

do {

KeAcquireSpinLock ();

nPacketsOld = nPackets; b=true;

iIf (request) {
request = request—> Next;

KeReleaseSpinLock (); nPackets++;

}
}while(nPackets != nPacketsOld);

KeReleaseSpinLock();

Let’s add the predicate
nPacketsOld==nPackets

Refinement Example

do {

KeAcquireSpinLock ();

nPacketsOld = nPackets:

if (request) {
request = request—> Next
KeReleaseSpinLock ();

nPackets++;

}
}while(nPackets != nPacketsOld);

KeReleaseSpinLock();

b=true:

b=b?false: %

b

Let’s add the predicate
nPacketsOld==nPackets

Refinement Example

. do {
@ . .
I KeAcquireSpinLock ();
@ b=true;
L
."'IIIII H\x\"x . If (% {
@ KeReleaseSpinLock ();
%) b=b?false: %
@ @ ywhile(1b);

% % KeReleaseSpinLock ();

Refinement Example

. do {
W reSpi
I KeAcquireSpinLock ();
@ b=true;
b @
.'IIIIII .‘H\k . if (% {

KeReleaseSpinLock ();

O

@ﬁ b=b?false: %
| }

®

} while(1b);

% % KeReleaseSpinLock ();

Refinement Example

@ do {
O KeAcquireSpinLock ();
_ b=true;
b L
if (9 {
@ KeReleaseSpinLock ();
@ﬁ b=b?false: %
L O }while(1b)

b % % KeReleaseSpinLock ();
b

Refinement Example

. do {
@ . .
I KeAcquireSpinLock ();
@ b=true;
b ®
If (9 {
@ KeReleaseSpinLock ();
%) b=b?false: %
}
b® 'b@ }while(1p):

b % % KeReleaseSpinLock ():
b

Refinement Example

do {
g KeAcquireSpinLock ();
b=true,
b ()
it (9 {
h KeReleaseSpinLock ();
b % b=b?false: %
}
b &b e
b @ @ KeReleaseSpinLock ();
h © @

Refinement Example

do {
g KeAcquireSpinLock ();
b=true,
b @H
it () {
h KeReleaseSpinLock ();
/b % b=b?false: %
/ }
L U
b Wb Wl e
b @ @ KeReleaseSpinLock ();
y © &

The property holds!

Counterexample-guided Abstraction Refinement

> “CEGAR”
> An iterative method to compute a sufficiently precise abstraction
> Initially applied in the context of hardware [Kurshan]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

CEGAR Overview

C program
1. Compute ? { 2. Check
Abstraction Abstraction
[noerror] OK
4, Refine 1 { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Counterexample-guided Abstraction Refinement

= (Claims:

1. This never returns a false error.

2. This never returns a false proof.

3. This is complete for finite-state models.

4. But: no termination guarantee in case of infinite-state systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Computing Existential Abstractions of Programs

C program
1. Compute ? { 2. Check
Abstraction Abstraction
[noerror] OK
4, Refine 1 { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Computing Existential Abstractions of Programs

Int main () {
Nt i;
i=0; + p1 & 120
P2 & even(l)
while (even (1))
I+ +
}
C Program Predicates

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

void main () {
bool pl, p2;

—>

}

p1=TRUE ;
p2=TRUE ;

while (p2) {

}

pl=pl? FALSE : *;
p2= p2;

Boolean Program
Minimal?

Predicate Images

Reminder:

Image(X) ={s' €S|3s € X.T(s,s")}
We need:

Image(X) = {3’ € §|38 € X.T(5,8")}

Image(X) is equivalent to:
5,8 € §2|EIS,S’ eS?.a(s)=sANa(s’) =8 ANT(ss') }

This is called the predicate image of T .
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Enumeration

= Let’s take existential abstraction seriously
= Basic idea: with n predicates, there are 27 - 27 possible abstract transitions

= Let’s just check them!

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Enumeration: Example

Predicates
P < I1=1
P2 & I1=2

p3 < even(l)

P1 P2 P3 B,

0 0 O Xx—
0 0 1

0 1 O

0 1 1

1 0 O

1 0 1

1 1 0

1 1 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Basic Block T
I+ —> =i+ 1

P1 Po P
O 0 O Query to Solver
010114 i#1A1#2 Aeven(i) A
o 1.0 =i+ 1A
011 ,) ..
1 0 0 1Z1A1#2Aeven(l)
1 0 1
1 1 O
1 1 1

Enumeration: Example

Predicates
P < I1=1
P2 & I1=2

p3 < even(l)

P1 P2 P3 -

0O 0 O

0 0 1 Y
0O 1 O

o 1 1

1 0 O

1 0 1

1 1 O

1 1 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Basic Block T
i++: —> =i+ 1

N
©
w

=

Query to Solver

1Z1A1#2Aeven(i) A
=i+ 1A
1 Z1 A1 #2Aeven(i)

P P kFRPPFPOOOO T
P RrOOPFrRPFr oo O
P OFRP OFrP OFr O

Enumeration: Example

Predicates
pr & I1=1 Basic Block T
| = 2 _ G
P2 = i++: —> I'=1+1

p3 < even(l)

P1 P2 P3 P1 P2 P3

T o0 T o R Query to Solver
0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1 ...andsoon...
1 1 0 1 1 0

1 1 1 1 1 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Predicate Images

Computing the minimal existential abstraction can be way too slow

« Use an over-approximation instead
v Fast(er) to compute

But has additional transitions

« Examples:
Cartesian approximation (SLAM)
« FastAbs (SLAM)

 Lazy abstraction (Blast)
 Predicate partitioning (VCEGAR)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Checking the Abstract Model

C program
1. Compute ? { 2. Check
Abstraction Abstraction
[noerror] OK
4, Refine 1 { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Checking the Abstract Model

= No more integers!

= But:
« All control flow constructs, including function calls
* (more) non-determinism

v BDD-based model checking now scales

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

@ Variables

VAR b0 argc ge 1: boolean; -— argc>=1

VAR bl argc le 2147483646 : boolean ; —— argc <= 2147483646
VAR Db2: boolean; —— argv[argc | == NULL
VAR b3 nmemb ge r: boolean; —— nmemb >=r

VAR b4 : boolean : —— pl == &array|0]
VAR b5 1 ge 8: boolean; —— {>= 8

VAR b6 I ge s: boolean; — |>= s

VAR b7 : boolean; — 1+ j>=8

VAR b8 : boolean; — 14+ i>=s

VAR b9 s gt O: boolean; --s>0

VAR b10 s gt 1: boolean; --—s>1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

@ Control Flow

-- program counter : 56 is the "terminating” PC
VAR PC: 0..56;

ASSIGN init (PC):=0; —initial PC

ASSIGN next (PC) : = case
PC=0: 1; --other
PC=1:. 2, --other

PC=19: case -- goto (with guard)
guardl19 : 26 ;
1:20;

esac ;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

@ Data

TRANS (PC=0) —> next(b0O_argc ge 1)=b0 argc ge 1
& next(bl argc le 213646)=Dbl argc le 21646
& next(b2)=b2

& (!b30
& ('b17
& (!b30
& ('b17
& (!b54

b36)
1b30
| b42
1b30
b60)

b42)
b48)
1b42 | b54)

TRANS (PC=1) —> next(b0 argc ge 1)=b0 argc ge 1

Qo Ro RO Ro Ro Ro

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

next(bl argc le 214646)=bl argc le 214746
next(b2)=b2
next (b3 nmemb ge r)=b3 nmemb _ge r
next(b4)=b4
next(b5 1 ge 8)=b5 1 ge 8
next(b6 i ge s)=b6 1 ge_ s

Finite-State Model Checkers: SMV

@Property

—— the specification

—— file main.c line 20 column 12
—— function c :: very buggy function
SPEC AG ((PC=51) —> 1b23)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

= |f the property holds, we can terminate

= If the property fails, SMV generates a counterexample with an assignment for all variables, including
the PC

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Simulating the Counterexample

C program
1. Compute ? { 2. Check
Abstraction Abstraction
[noerror] OK
4, Refine 1 { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Lazy Abstraction

= The progress guarantee is only valid if the minimal existential abstraction is used.
» Thus, distinguish spurious transitions from spurious prefixes.

= Refine spurious transitions separately to obtain minimal existential abstraction

= SLAM: Constrain

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Lazy Abstraction

= One more observation:
Each iteration only causes only minor changes in the abstract model

= Thus, use “incremental Model Checker”, which retains the set of reachable states between iterations
(BLAST)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

main() {
int main() {

nt X, v nool bO; /I y>x
1 D0=*;
- | n0=*;
£y Pre;/:l;cxate: if (h0)

y——: bO=*;
else else

y++: bO=*;
assert(y> x); assert(b0);

) }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

Int main() { main() {

Int X, y;

o bool bO; /I y>x

y=1; @

| readicate. if (b0

(v %) o x Q\QI (b0)

bO=*;
y== ’
else

else bO=%;
y++; N

assert(y> x): assert(b0);

} }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

Int main() {
Int X, y;

i£ (S X) We now do a path test, so convert to
\I y Static Single Assignment (SSA).

@ assert(y>x);
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

int main() { yi=1 A
int x, v; X1=1 A
>X1 AN
O yi1=1; Y1
! =yi—1 A
O x1=1; y2 =1
’
Qi (Yy1>X1)
AN
O yo=y1-1;
else ~(y2 > xa)
y++;

This is UNSAT, so

@ assert(y2>x1); 7T Is spurious

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Refining the Abstraction

C program
1. Compute ? { 2. Check
Abstraction Abstraction
[noerror] OK
4. Refine ? { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Manual Proof!

int main() {

Int X, y;

y=1,

y =1}

x=1" This proof uses
strongest
— 1 A — 1 mgn
{x y =1} post-conditions
if (y>x)

y—,
else

IX=1Ay=1A-y>x}

y++;

[X=1AYy=2AYy>x}
assert(y>x);

}

An Alternative Proof

Int main() {
Int x, v,
y=1
We are using weakest pre-conditions here
{—Iy>l:y+l>1}
x=1: wp(x:=E, P) = P [X/E]

wp(S; T, Q) =wp(S,wp(T,Q))

_ wp(i£f(C) AelseB,P)=
o (C =Wp(AP)) A
else (-C =wp(B,P))

{y +1>Xx} _
V++: The proof for the "true” branch is missing

{y > X}
assert(y>x);

{ny >x=y+1>x}

Refinement Algorithms

Using WP

1. Start with failed guard G
2. Compute wp(G) along the path

Using SP

1. Start at the beginning
2. Compute sp(...) along the path

» Both methods eliminate the trace
Advantages / Disadvantages?

A\

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Approximating Loop Invariants: SP

Int x, y;
The SP refinement results in
x=y=0;
Sp(x=y=0, true) = x=0Ay=90
while(x!'=10) {
X++: Sp(X++;y++,...) = x=1Ay=1
} y++, Sp(X++;y++,...) = xX=2AYy=2
Sp(X++,y++,...) = X=3AY=3

assert(y==10);

v 10 iterations required to prove the property.
v It won’t work if we replace 10 by n.

57

Approximating Loop Invariants: WP

Iint x, vy,
The WP refinement results in
X=y=0;
wp(x==10,y #10) = yz10Ax=10
while (x!=10) { Wp(X++; y++,...) = Y#£9Ax=9
X++; Wp(x++; y++,...) = Y#8AX =28
VARE Wp(X++; y++,...) = YZFTAXx=7

}

assert(y==10);

v Also requires 10 iterations.
v It won’t work if we replace 10 by n.

58

What do we really need?

Consider an SSA-unwinding with 3 loop iterations:

Int x, vy;
x=y=0; 1st It. - 2ndIit. 3rd It ~ Assertion
| x1#10 x2210 x3#10

while (x!=10) { x1=0 O T L L xa=10
N Yyt = 0 x2=x1+1 | x3=x2+1 | x4=x3+1 10

) = s N | W

y++; wEwtl mEwtl weml Y

} x1 =20 x2 =1 X3 = X4 =3

y1 = 0 =1 Y3 = 2 ya =3

assert(y==10);

XThis proof will produce the same predicates as SP

59

What do we really need?

Suppose we add a restriction = “no new constants™:

Int x, y;
x=y=0; 1st It. - 2ndIit. 3rd It ~ Assertion
| £10 x2210 | x3210
while (x1=10) { xp=o A0 @Al B0 =10
N Yyt = 0 x2=x1+1 | x3=x2+1 | xX4=x3+1 | 10
) = | | _ | _ 4
Y+ pEutl BEEntl =t Y
| x1 =0 x2 =1 = X4 = y4
yr =20 =1 3 = (loop invariant)

assert(y==10);
X3 = y3
(loop invariant)

v The language restriction forces the solver to generalize!

59

